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Harmonic Lattice Behavior of Two-Dimensional Colloidal Crystals
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Using positional data from videomicroscopy and applying the equipartition theorem for harmonic
Hamiltonians, we determine the wave-vector-dependent normal mode spring constants of a two-
dimensional colloidal model crystal and compare the measured band structure to predictions of the
harmonic lattice theory. We find good agreement for both the transversal and the longitudinal modes.
For ¢ — 0, the measured spring constants are consistent with the elastic moduli of the crystal.

DOI: 10.1103/PhysRevLett.92.215504

Colloidal crystals have a long tradition as condensed
matter analogs of ordinary solids. They are studied, for
example, to understand phenomena such as freezing and
melting [1]. Unlike in ordinary solids having properties
that are often difficult to connect to the underlying atomic
interactions, the interparticle potentials in such colloidal
crystals are in most cases precisely known and, more
importantly, externally controllable. Moreover, the rele-
vant time and length scales in colloidal systems are
comparatively easy to access experimentally. Both as-
pects suggest studies directly probing the connection
between microscopic interaction potentials and macro-
scopic crystal properties.

The property we here consider is the crystal’s elastic
response to thermal excitations, specifically the phonon
elastic dispersion relations. In this regard, colloidal crys-
tals are rather special in that their phonons are almost
always overdamped: The ratio between the wave-vector
dependent frequency w(g) = +/A(g)/m, characteristic of
the harmonic forces with spring constants A(g), and the
friction factors A(g) (also g dependent [2]) for the
modes of lattice motion through the host liquid is typi-
cally of the order of 1073 to 107* in colloidal systems.
Therefore, the time autocorrelation function of a phonon
normal mode coordinate decays exponentially with a rate
given by A(g)/A(g) [2,3]. This decay rate can be, and
has repeatedly been, measured by means of dynamical
light scattering [2,4—7] or inelastic light scattering [8].
Phonon-dispersion relations have been determined in
charge stabilized [2,5,6] and purely hard sphere colloidal
crystals [7,8], in the context of dusty plasma physics [9],
but also in more exotic systems such as crystals made of
mm steel spheres [10] or optically anisotropic spheres [4].
Microscopic information about the spring constants and
thus the particle interaction potentials can be derived only
from these decay rates, i.e., from A(g)/A(g), if one resorts
to a model describing the complicated frictional and
hydrodynamical forces. A direct access to A(g), i.e., one
free from any assumptions of a model, is not possible in
this approach.

In this Letter, we report on a videomicroscopy study of
two-dimensional (2D) colloidal crystals and show how to
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obtain direct access to the normal mode band structure
A(g) of the crystal, circumventing, in particular, the
difficulties arising from the hydrodynamic interactions.
The central idea is to avoid a dynamical measurement
and to analyze instead spatial correlations between the
particles which are then related to the A(g), the eigen-
values of the dynamical matrix characterizing the elastic
properties of the harmonic crystal. This becomes possible
through the use of digital videomicroscopy [11] providing
us with the trajectories of all particles. The colloidal
system we examine is well studied and the interparticle
potential precisely known [12—-14]. This will be of advan-
tage when establishing a quantitative link between the
measured A(g) and the theoretical band structure based
on the pair potential.

The experimental setup is an improved version of the
one described in [12]: Spherical colloids (diameter d =
4.5 pm) are confined by gravity to a water/air interface
formed by a water drop suspended by surface tension in a
top sealed cylindrical hole of a glass plate. The flatness of
the interface can be controlled within t% pm. The field
of view has a size of 835 um X 620 wm containing typi-
cally up to 3 X 10° particles, whereas the whole sample
contains about 10° particles. The number of particles in
the field of view is controlled by the curvature of the
droplet via an active regulation with an accuracy of 1%
and the biggest observed particle-density gradient is
0.7%. The variation of the inclination of the sample is
in the range of a = 1 urad so that the collective motion
of the particles relative to the field of view is below
2 um/h providing best equilibrium conditions for long
time stability. The particles are superparamagnetic due to
Fe,0; doping. A magnetic field B applied perpendicular
to the air/water interface induces in each particle a mag-
netic moment M = )(E which leads to a repulsive dipole-
dipole pair-interaction energy of Buv(r) =T/(/@pr)’
with the dimensionless interaction strength given by I' =
B(uo/4)(xB)*(mp)*/? (B = 1/kT inverse temperature,
x susceptibility, p = 2/+/3a? 2D density, a lattice con-
stant of a hexagonal lattice). The interaction can be ex-
ternally controlled by means of the magnetic field B. I’
was determined as in Ref. [12] and is the only parameter
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controlling the phase behavior of the system. For I' > 60,
the sample is a hexagonal crystal [13] (see Fig. 1). The
sample was tempered at high interaction strength up to
I' = 250 deep in the crystalline phase until a 2D mono-
crystal was observed. We here analyze three different
crystals, from hard to soft (I' = 250, 175, 75), and use
for each system about 2000 statistically independent con-
figurations with approximately 1300 particles, recorded
at equal time intervals (A7 = 2 s) ina 440 um X 440 um
frame using digital videomicroscopy with subsequent
image processing on the computer. For each of all N
particles in a given configuration, we determine the dis-
placement ii(R) of the particle from its equilibrium posi-
tion R.

Using the theory of harmonic crystals [15], we now
derive an equation guiding us from the measured dis-
placement vectors i(R) to the eigenvalues of the dynami-
cal matrix. Let D, ,(g) (1, v € {x, y}) be the dynamical
matrix [15], connected through a Fourier transformation
to the matrix D u,v(ﬁ’ R') which is essentially the matrix
of the second derivatives of the pair potential v(r) ~
I'/r3. 1t is obvious that D, ,(§) depends linearly on the
interaction strength parameter I'; therefore we write
D, ,(§) = (kTT/a*)D,, ,(§) and obtain the dimension-
less dynamical matrix D, ,(§) which is independent of
I. Its eigenvalues are denoted by A (§)a?/(kTT). Here the
polarization subscript s stands for the longitudinal (s = [)
and transversal (s = f) mode. The harmonic potential
energy of the crystal can be written in the following
form [15]:

1
U=3 > ua(@D,,(@u,(3). )
4,1, v

with u, () being the vth component of the Fourier trans-
form of the displacement vectors #(R). The equipartition
theorem for a classical harmonic Hamiltonian states that,
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FIG. 1. Micrograph (420 um X 310 wm) of a typical col-
loidal crystal investigated in the present work; the two-
dimensional system consists of paramagnetic colloids confined
at the air-water interface of a hanging water drop.
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on average, every mode has an energy of k7T/2. Thus,
(u, (@)D, ,(§)u,(§))/2 = kT /2 and this leads us to [16]

(},(§u,(§)) = kTD, (), 2)

where in our case the average has to be taken over all
measured configurations. Introducing with p,(g) an ab-

breviation for the eigenvalues of the matrix
I (§)u,(§))/a, one arrives at
1 A (g)a?
= = , (s =11). (3)
ps(@)  kTT

Static and slowly moving distortions of the lattice are the
main source of error in our experiment. We sometimes
observe long-range bending of lattice lines, a finite-size
problem which in soft crystals can be partly overcome in
giving the crystal enough time to equilibrate. This takes
more time, the harder the crystal. For our hardest crystal,
we have not managed to avoid a small but clearly visible
bending of lines. A second problem is related to the
determination of each particle’s equilibrium position R,
without which the displacement vectors #(R) cannot be
determined. A cooperative drift of all particles can be
observed: Particles can depart significantly from their
lattice sites, but keep a nearly constant distance from
each other so that nearby trajectories are similar (illus-
trative example pictures of these trajectories can be found
in [13,17]). This is a behavior typical of a 2D crystal. It is
long known [18] that no true long-range order exists in 2D
crystals. In contrast to a 3D crystal, the density-density
correlation function decays algebraically with distance
and the root mean square displacement diverges logarith-
mically with system size. The answer to this problem is
the introduction of a “local” coordinate system; that is,
one in which the particles’ displacement is calculated with
respect to the positions of nearest neighbors [17,19].
Then, the root mean square displacement stays indeed
finite, and the 2D crystal melts as predicted by
Lindemann’s rule [17]. This has been confirmed also
experimentally [13]. To correct our data for this long-
range distortion, we first calculated coarse-grained tra-
jectories by averaging over a sliding time window AT
having a width of 25, 40, and 60A¢ for I' = 250, 175, and
75, respectively. We then analyzed the short-time dis-
placement of the particles with respect to these coarse-
grained trajectories to obtain the true fluctuations of the
underlying crystal. Our whole data evaluation procedure
has been successfully tested by processing data obtained
from Monte Carlo simulations, using the pair potential
and parameters of our experiment.

Figure 2 shows 1/p,(q) from Eq. (3) as obtained from
the measured set of displacement vectors for I' = 250,
175, and 75, and compares it to the theoretical band
structure (solid lines) of a harmonic crystal having a
two-dimensional hexagonal lattice (a = 12.98 um). The
latter is based on the second derivatives of the known pair
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FIG. 2. Band structure of harmonic lattice spring constants
of a 2D colloidal crystal. Symbols for constants experimentally
determined with Egs. (2) and (3) from the relative displace-
ment of the particles from their equilibrium position for a soft
(I' =175, empty circles), a hard (I' = 175, empty squares),
and a very hard (I" = 250, filled triangles) crystal; solid lines
for the theoretical band structure calculated from standard
harmonic crystal theory using the pair potential Buv(r) =
F/(\/W—pr)? The inset shows the first Brillouin zone of the
hexagonal lattice and labels for high-symmetry points, defin-
ing the lines in the interior and on the surface of the first
Brillouin zone along which the band structure is plotted. The
upper curve corresponds to the longitudinal, and the lower one
to the transversal mode.

potential and results from diagonalizing D, ,(§) [15]. 17
neighbor shells have been taken into account in
D, (R, R'); the difference to the results for only three
shells is already tiny. We find good agreement for both the
transversal and longitudinal mode. No fit parameter has
been used. Preaveraging with a finite time window im-
proves the agreement. Without it (i.e., taking the average
over the whole trajectory to define R), the peak at the M
point in the band structure is about 10% smaller for each
I than it is in Fig. 2. The data are particularly sensitive to
the quality of the crystal near the edges of the first
Brillouin zone, especially near the M point. The uncer-
tainty in determining the direction of the lattice lines
plus the bending of these lines explain the remaining
differences between the theoretical and the experimental
band structure, but also the differences between the three
different crystals. We also checked for the occurrence of
dislocations in all our samples. Only thermally activated
dislocation pairs have been observed, but no static, iso-
lated dislocation destroying the crystal symmetry.

At g — 0, the elastic moduli of the crystal can be read
off from the elastic dispersion curves: lim,_yA,(q) =
uvog* and lim,_gA,(¢) = (K + u)vog?, where K and
are the bulk and shear elastic moduli of continuum theory
(with the cell volume v, = 1/p). Moreover, in the elastic
limit A;(g) and A,(g) are particularly simple to obtain
from the measured displacement vectors: We multiply on
either side of Eq. (2) g = (¢.. q,) and G, = (—¢,, q,)
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dent of I'. Figure 3 shows d}(¢)I" and d (§)I, evaluated
with the experimental data for all three crystals (I' = 75,
175, 250 symbols) and theoretically using the dynamical
matrix D, ,(¢) and the pair potential (solid lines). For the
pair potential ~I'/73, the elastic constants can be calcu-
lated to be Ka?/kT = 3.4611" and u = K/10 in the limit
I' = oo (T =0) [14,20]. Arrows in Fig. 3 indicate the
prediction of the T = 0 calculation. While the data on
the longitudinal branch [curves (3) and (4)] show excel-
lent agreement and correctly approach the 7 = 0 inverse
bulk modulus, theoretical and experimental data on the
transversal branch disagree at low g. This is due to the
time windowing of our data and the finite size of our
sample. Taking data from this very experiment, it has
already been shown [14] that appropriate finite-size scal-
ing leads to an almost perfect agreement with the T = 0
prediction of the elastic moduli. We should also remark
that the location of the branching points of the I'— K
and I' — M curves in Fig. 3 reveal that the assumption of
isotropy is justified only if ga <1 for the transversal and
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FIG. 3. 4y(@)I and d,(g)I" from Eq. (4), evaluated with the
same data as in Fig. 2. For ¢ — 0, d(¢) — kT/((K + u)a®) and
d, (g) — kT/(wa®), where K is the bulk modulus and u the
shear modulus. Curves (1) and (2) are d, (¢)I" in the I' = M
[curve (1)] and the I' — K [curve (2)] directions, (3) and (4) are
d(@I in the I' = K [curve (3)] and the I' — M [curve (4)]
directions. Symbols, lines, and the labels I, K, M for symmetry
points are all defined in Fig. 2. Arrows indicate the 7 =0
prediction of the elastic moduli (see text).
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ga < 3 for the longitudinal modes. This defines the lim-
its for the continuum approach often chosen to describe
this system.

In summary, we used videomicroscopy data to deter-
mine g-dependent normal mode spring constants of a 2D
colloidal crystal. We checked the continuum limit and
compared the experimental data to the predictions of the
classical theory of a harmonic crystal. Our data evalu-
ation procedure can be seen as an illustration of the
validity of the equipartition theorem. The success of our
undertaking was not clear from the beginning; if a crys-
tal in 2D is not stable, how can one measure the nor-
mal mode spring constants? Here the ideas put forward
in [13,17] proved helpful, specifically the introduction of
a local coordinate system. Analyzing particle distribu-
tions at equilibrium, we were allowed to completely
ignore the lattice dynamics. In this context, it is worth
remembering that Fig. 2 is not a phonon-dispersion rela-
tion in the classical sense as there are no phonons
propagating with w,(g) = +/A,(g)/m. Our results demon-
strate that a colloidal crystal can be seen as a bead-spring
lattice immersed in a viscous fluid [21]. A normal vibra-
tion mode then transforms into a ‘“‘normal relaxation
mode” [2,21], and the motion of a particle is to be under-
stood as superposition of these ‘“‘normal relaxation
modes.” A time-dependent analysis of our data will allow
one to study the relaxation process of these normal
modes. These avenues await further investigations. We
finally remark that the statics and dynamics of over-
damped phonons in two-dimensional colloidal crystals
may also be seen as a contribution to our understanding of
surface phonons [22].

Stimulating discussions with R. Klein and E. Trizac are
gratefully acknowledged. We also acknowledge financial
support from the Deutsche Forschungsgemeinschaft
(European Graduate College ““Soft Condensed Matter”
and Schwerpunktprogramm Ferrofluide, SPP 1104).
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